第20课 二元一次方程组全章复习与巩固(教师版).docx
《第20课 二元一次方程组全章复习与巩固(教师版).docx》由会员分享,可在线阅读,更多相关《第20课 二元一次方程组全章复习与巩固(教师版).docx(12页珍藏版)》请在第一文库网上搜索。
1、第20课 二元一次方程组全章复习与巩固课程标准1 . 了解二元一次方程组及其解的有关概念;2 .掌握消元法(代入或加减消元法)解二元一次方程组的方法;3 .理解和掌握方程组与实际问题的联系以及方程组的解;4 .掌握二元一次方程组在解决实际问题中的简单应用;5 .通过对二元一次方程组的应用,培养应用数学的理念.趣知识精讲0-3 , D知识点。1二元一次方程组的相关概念1 .二元一次方程的定义定义:方程中含有两个未知数(一般用元和y),并且未知数的次数都是L像这样的方程叫做二元一次方 程.注意:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数.2 2) “未知数的次数为1”是
2、指含有未知数的项(单项式)的次数是1.(3)二元一次方程的左边和右边都必须是整式.2 .二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.注意:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程Xa的解通常表示为4的形式.y=b3 .二元一次方程组的定义3x + 4y = 5x-2定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.止匕外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组注意:ax + hy - G(1)它的一般形式为111 (其中%,出,3 8不同时为零
3、).a2x + b2y = C2(2)更一般地,如果两个一次方程合起来共有两个未知数,那么它们组成一个二元一次方程组.(3)符号“ ”表示同时满足,相当于“且”的意思.4 .二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.注意:(1)方程组中每个未知数的值应同时满足两个方程,所以检验是否是方程组的解,应把数值代入两个方程, 若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.(2)方程组的解要用大括号联立;(3) 一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组47 无解,而方程组2x + y = 6x+
4、y = -1 一元一次方程 转化 2 .解二元一次方程组的基本方法:代入消元法和加减消元法(1)用代入消元法解二元一次方程组的一般过程:从方程组中选定一个系数比较简单的方程进行变形,用含有1(或y)的代数式表示y (或R),即变成y = x + b (或x = y + Z?)的形式;将y = 1x + b (或Jr =代入另一个方程(不能代入原变形方程)中,消去y (或R),得到 一个关于X(或y)的一元一次方程;解这个一元一次方程,求出X (或y)的值;把X (或y)的值代入y = a + /?(或x = y + Z?)中,求y (或1)的值;用“ ”联立两个未知数的值,就是方程组的解.注意
5、:(1)用代入法解二元一次方程组时,应先观察各项系数的特点,尽可能选择变形后比较简单或代入后化简比 较容易的方程变形;变形后的方程不能再代入原方程,只能代入原方程组中的另一个方程;要善于分析方程的特点,寻找简便的解法.如将某个未知数连同它的系数作为一个整体用含另一个未知 数的代数式来表示,代入另一个方程,或直接将某一方程代入另一个方程,这种方法叫做整体代入法.整体 代入法是解二元一次方程组常用的方法之一,它的运用可使运算简便,提高运算速度及准确率.(2)用加减消元法解二元一次方程组的一般过程:根据“等式的两边都乘以(或除以)同一个不等于O的数,等式仍然成立”的性质,将原方程组化成 有一个未知数
6、的系数绝对值相等的形式;根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的 两个方程相加(或相减),消去一个未知数,得到一个一元一次方程;解这个一元一次方程,求出一个未知数的值;把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值;将两个未知数的值用“ ”联立在一起即可.注意:当方程组中有一个未知数的系数的绝对值相等或同一个未知数的系数成整数倍时,用加减消元法较简单.3H3 .燮、知识点。3实际问题与二元一次方程组设未知数,列方程组F实际问题实际问题的答案数学问题(二元一次方程组)注意:(1)解实际应用问题必须写“答”,而且在写答案前
7、要根据应用题的实际意义,检查求得的结果是否合理, 不符合题意的解应该舍去;(2) “设”、“答”两步,都要写清单位名称;(3) 一般来说,设几个未知数就应该列出几个方程并组成方程组.基知识点04三元一次方程组1.定义:含有三个未知数,并且含有未知数的项的次数都是1的方程叫做三元一次方程;含有三个相同的 求知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程 组.4x + y-Z = 12, 3x + 2y + z = -5,X - y -5z = 1,2a + Tb = 3,3a-c = ly等都是三元一次方程组.1 b + 3。= 4注意:理解三元一次
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第20课 二元一次方程组全章复习与巩固教师版 20 二元 一次 方程组 复习 巩固 教师版
