基于DSP的质子交换膜燃料电池测控系统设计.doc
《基于DSP的质子交换膜燃料电池测控系统设计.doc》由会员分享,可在线阅读,更多相关《基于DSP的质子交换膜燃料电池测控系统设计.doc(10页珍藏版)》请在第一文库网上搜索。
1、 基于DSP的质子交换膜燃料电池测控系统设计为了提高PEMFC(质子交换膜燃料电池)发电系统的输出性能,本文以飞思卡尔的DSP芯片MC56F8013为核心,设计了一种测控系统,对整个PEMFC的发电过程进行监控。首先介绍了通用测控系统的基本组成,然后详细介绍了整个测控系统的软硬件设计,最后进行了系统的发电性能测试实验。实验表明,所设计的测控系统能保证电池的稳定输出,性能基本达到预期指标。质子交换膜燃料电池(PEMFC)具有低噪音、零污染、无腐蚀、长寿命及空间相对较少等优点,但由于PEMFC发电系统性能输出的影响因素有很多,包括燃料的温度、湿度、浓度、压力、电气负载,以及周围环境的条件等,导致许
2、多电池系统输出的总谐波失真较高、效率较低、可靠性不好。为了提高电池系统的通用性,针对风冷型的PEMFC,设计了一种基于DSP的测控系统,实验效果令人满意。本文针对测控系统的基本组成与功能特点,主要对整个测控系统的软硬件设计进行了详细的介绍与讨论。PEMFC测控系统简介PEMFC系统除了核心部分质子交换膜燃料电池堆外,还需要一些辅助系统才能正常工作。总的来说,一个完整的燃料电池系统大致上由发电系统和控制系统两大部分组成。通用的PEMFC测控系统主要由以下几部分构成:传感器、控制单元、数据采集单元、执行单元、通信单元、报警及显示单元等。本实验室使用的是百瓦级风冷型发电系统,整个实验系统的结构示意图
3、如下图1所示。图1 系统结构示意图由以上示意图可知本发电系统的核心部分就是系统的控制器设计。由于系统的燃料氢气的供应是由连接在氢气瓶上的二级减压阀控制,这样整个测控系统就主要完成尾气的排放、电堆的温度控制、报警、显示及通信等几个功能。其中对温度的控制,是整个控制系统的核心,因为温度的控制是保证整个发电系统正常工作必不可少的部分。测控系统硬件设计由测控系统的组成结构分析,针对我们这个具体的燃料电池,本系统的硬件结构主要分为以下几部分:主控芯片、电源模块、数据采集模块、通信模块、报警显示模块、执行模块等。具体的硬件结构组成框图如下图2所示。图2 系统硬件组成框图1 主控芯片主控芯片是整个控制系统的
4、核心,它是系统算法实现的载体。鉴于DSP的高速运算特性及特定的控制对象电机,本系统选用的是飞思卡尔(FreeScale)的DSP芯片MC56F8013,该芯片是FreeScale推出的针对电机驱动和电力电子应用的DSP,它采用的是哈佛结构,不需要外接晶振,工作性能为固定的32MHZMIPS,片内六路高速PWM输出通道,六路12位高速模拟转换器等丰富资源,因此很适合本系统的需要。2 电源模块电源模块是对电池的输出电压进行转换处理,提供整个DSP控制系统正常工作所需要的稳定电源。由于电池的输出电压为9-18V的范围,而系统的供电电压有四个电压等级,分别是12V、6V、5V、3.3V,所以要将输出电
5、压转换为所需要的电压等级。其中12V电压用LM2576-12芯片进行转换,为降温风扇供电;6V电压用LM7806芯片进行转换,为排气电磁阀供电,5V电压用LM2576-5芯片进行转换,主要给各种芯片供电,3.3V电压用AMS1117芯片进行转换,主要为处理器供电。3 数据采集模块数据采集模块包括温度测量和信号调理两部分。其中温度测量部分主要是对室温及电堆温度进行测量,其中对室温的测量是采用单总路线数字温度计DS18B20,对电堆温度的测量是用MAX6675配合K型热电偶。信号调理部分主要对负载及风扇的电压电流信号进行调理以便主控芯片内的A/D模块能直接测量。其中对负载电压的调理电路如下图3所示
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 DSP 质子 交换 燃料电池 测控 系统 设计
