第24课 期末复习与巩固(教师版).docx
《第24课 期末复习与巩固(教师版).docx》由会员分享,可在线阅读,更多相关《第24课 期末复习与巩固(教师版).docx(8页珍藏版)》请在第一文库网上搜索。
1、第24课期末复习与巩固微:如识精讲昱 ,知识点Ol二次根式1二次根式定义形如G (a0)叫做二次根式2取值范围 yfa : 0 ;,: 0 ;: a Oa 1Q 13二次根式的 性质(1) (V) 2=a(2) ya = 61 = O 0,a = 0 _ -a, a 0) V a 7a(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用 它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式, 变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移 到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)
2、二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商) 仍作积(商)的被开方数并将运算结果化为最简二次根式.(4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律 以及多项式的乘法公式,都适用于二次根式的运算.7分母有理化1 4a1yu + yfb_亚 a-bg.知识点02勾股定理1勾股定理如果直角三角形的两直角边长分别为a, b,斜边长为c,那么M+b2=c22勾股定理 逆定理如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形3直角三角形的 性质直角三角形的两个锐角互余。可表示如下:ZC=90o =ZA+ZB=90o在直角三角形中
3、,30。角所对的直角边等于斜边的一半a2+b2=c2斜边的中线等于斜边的一半4斜边上的高若a, b是直角边,c是斜边,则斜边上的高是?5直角三角形三边的关系A : Ca a2 +b1 =c2_片=(Q+ /?)2 一2Clb7勾股定理与勾股定理的证明勾股数数轴3,4,5; 6,8,10; 5/23利用勾股定理表示无理数的方法:(1)利用勾股定理把一个无理数表示成直角边是两个整数的直角三角形的斜边;(2)以原点为圆心,以无理数边长为半径画弧与数轴存在交点,在原点左边的点表示负无理数,在原点右边的点表示正无理数;(3)若出现后+ 2类型,则在数轴上以直且为圆心,弧与数轴的右侧交点即为所*、知识点0
4、3平行四边形1四边形内角和四边形的内角和等于360。2四边形外角和四边形的外角和等于360。3多边形的内角和(n-2)180。4多边形的 外角和3605平行四边形的 性质 ABCD是平行四边形7矩形的性质 具有平行四边形的所有通性;(2)四个角都是直角;(3)对角线相等.8矩形的判定(1)平行四边形+ 一个直角(2)三个角都是直角(3)对角线相等的平行四边形,n四边形ABCD是矩形9菱形的性质 具有平行四边形的所有通性;(2)四个边都相等;(3)对角线垂直且平分对角.10菱形的判定(1)平行四边形+ 一组邻边等、(2)四个边都相等(3)对角线垂直的平行四边形,=四边形四边形ABCD是菱形11正
5、方形的性质 具有平行四边形的所有通性;(2)四个边都相等,四个角都是直角;(3)对角线相等垂直且平分对角.12正方形的判定 平行四边形+ 一组邻边等+一个直角、(2)菱形+一个直角(3)矩形+一组邻边等,n四边形ABCD是正方形.13等腰梯形的性质 两底平行,两腰相等; (2)同一底上的底角相等; (3)对角线相等.14等腰梯形的判 定(1)梯形+两腰相等(2)梯形+底角相等(3)梯形+对角线相等,n四边形ABCD是等腰梯形15三角形中的中 位线连接三角形两边史点的线段叫做三角形的中位线。16三角形中位线定理三角形的中位线壬在第三边,并且等于它的一半17三角形中位线定理的作用位置关系:可以证明
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第24课 期末复习与巩固教师版 24 期末 复习 巩固 教师版
